logo pages de liens

Votre portail e-Learning
ENSup. et Minist. EN
Séminaire MaMuX
Mathématiques, musique et relations avec d'autres disciplines


Maillages - Lattices ...

Bas de page


This data-base of lattices is a joint project of Gabriele Nebe, University of Ulm (nebe@mathematik.uni-ulm.de) and Neil J. A. Sloane, AT&T Labs-Research (njas@research.att.com).
Our aim is to give information about all the interesting lattices in "low" dimensions (and to provide them with a "home page"!). The data-base now contains about 160,000 lattices!
GRISK  the GReat International Search for K-optimal lattice rules
Our current search is for 5 dimensional rules with trigonometric degree = 10. The search is composed of 50505 individual tasks. Each taking between 1 and 250000 cpu-seconds, depending on the problem and the power of your workstation.
Note: Grisk is the Norwegian word for greedy
<http://www.ii.uib.no/grisk/> <http://www.desy.de/user/projects/users.html>
The aim of this document is to provide information on mesh and grid generation: people working in the field, research groups, books and conferences. It is maintained by Robert Schneiders.
<http://www-users.informatik.rwth-aachen.de/~roberts/meshgeneration.html> <http://home.wxs.nl/~faase009/Crook_path.html>



Université Bordeaux 1 Laboratoire A2X (Laboratoire d'Algorithmique Arithmétique et Expérimentale)
<http://www.math.u-bordeaux.fr/~martinet/> < http://www.research.att.com/~njas/> <http://www.mathematik.uni-ulm.de/ReineM/nebe/>
Olin Professor of Computer Science
Computational Geometry is a relatively new field concerned with designing algorithms and computer programs to perform geometric computations. A need for such computations arises in many fields: computer graphics, robotics, pattern recognition, geography, manufacturing, and so on. An example is the following problem that arises in medical imaging.



chess/knight.control, knight.most, knight.tour, ...



This is a list of public domain and commercial mesh generators (click here for other sources of interest). I have listened only programs for which online information exists. There is also a section on papers that review mesh generators.
Light rays reflecting from mirrors. Shortest paths on a polyhedral surface. Random or uniform points on a sphere.Volume of a polyhedron. Orientation of 2D polygon (cw/ccw). Centroid of 2D simple polygon. Polygon Visibility Graphs. Intersection of triangles in 3-space. Code assosciated with textbook.



Fast Polygon Triangulation  based on Seidel's Algorithm
<http://www.cs.unc.edu/~dm/CODE/GEM/chapter.html> <http://www-cgrl.cs.mcgill.ca/~godfried/research/triangulations.html>
F. Cazals, December 1997. A fundamental problem in lattice statistics is the monomer-dimer problem, in which the sites of a regular lattice are covered by non-overlapping monomers and dimers, that is squares and pairs of neighbor squares. An example of such a tiling for a chessboard with and is depicted below. The relative number of monomers and dimers can be arbitrary or may be constrained to some density , and the problem can be generalized to any fixed dimension . This model was introduced long ago to investigate the properties of adsorbed diatomic molecules on a crystal surface [Rob35]
<http://algo.inria.fr/libraries/autocomb/MonoDiMer-html/MonoDiMer1.html> <http://www.eleves.ens.fr:8080/home/ollivier/treillis/texte/treillis2.html> <http://www.mat.univie.ac.at/People/kratt/papers.html>
R. Kimmel, J.A. Sethian
The Fast Marching Method [8] is a numerical algorithm for solving the Eikonal equation on a rectangular orthogonal mesh in O(M log M) steps, where M is the total number of grid points. In this paper we extend the Fast Marching Method to triangulated domains with the same computational complexity. As an application, we provide an optimal time algorithm for computing the geodesic distances and thereby extracting shortest paths on triangulated manifolds. 1 Introduction Sethian`s Fast Marching...

 haut de page

Advertising :   If you see a reference in one of the files that is not linked, and you know of a link address to the appropriate document, please send me mail, and I will include the link in the document. Thanks very much in advance.
Avertissement :    Le classement par catégories est approximatif. Certains liens se retrouvent dans des rubriques différentes et sur plusieurs pages. Les commentaires sont généralement des courts extraits des pages référencées. Il est possible que certains liens nécessitent une mise à jour.
Tous commentaires ou remarques sont les bienvenus, vous pouvez les adresser à :

Les mises à jour demandées sont réalisées dès que possible et, sauf si c'est nécessaire, aucun message de réponse n'est expédié. Merci de m'écrire.

Copyright © 1999-2012 Jean-Paul Davalan - Reproduction interdite.